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Abstract—Data-driven Machine and Deep Learning (ML/DL)
is an emerging approach that uses medical data to build robust
and accurate ML/DL models that can improve clinical decisions
in some critical tasks (e.g., cancer diagnosis). However, ML/DL-
based healthcare models still suffer from poor adoption due
to the lack of realistic and recent medical data. The privacy
nature of these medical datasets makes it difficult for clinicians
and healthcare service providers, to share their sensitive data
(i.e., Patient Health Records (PHR)). Thus, privacy-aware col-
laboration among clinicians and healthcare service providers
is expected to become essential to build robust healthcare
applications supported by next-generation networking (NGN)
technologies, including Beyond sixth-generation (B6G) networks.
In this paper, we design a new framework, called HealthFed, that
leverages Federated Learning (FL) and blockchain technologies
to enable privacy-preserving and distributed learning among
multiple clinician collaborators. Specifically, HealthFed enables
several distributed SDN-based domains, clinician collaborators,
to securely collaborate in order to build robust healthcare ML-
based models, while ensuring the privacy of each clinician
participant. In addition, HealthFed ensures a secure aggregation
of local model updates by leveraging a secure multiparty com-
putation scheme (:.c., Secure Multiparty Computation (SMPC)).
Furthermore, we design a novel blockchain-based scheme to
facilitate/maintain the collaboration among clinician collabora-
tors, in a fully decentralized, trustworthy, and flexible way. We
conduct several experiments to evaluate HealthFed; in-depth
experiments results using public Breast Cancer dataset show
the efficiency of HealthFed, by not only ensuring the privacy of
each collaborator’s sensitive data, but also providing an accurate
learning models, which makes HealthFed a promising framework
for healthcare systems.

Index Terms—Healthcare; Federated Learning; B6G; SDN;
Blockchain.

I. INTRODUCTION

REAST cancer is considered as one of the most severe

and aggressive diseases with a low median survival; it
has a major and severe impact on society across the world.
The number of cancer cases is growing rapidly with an
estimation of 29.5 million new cancer cases per year by
the end of 2040 [1]. Traditional and laboratory diagnostics
are facing several challenges due to the huge costs and lack
of accurate and timely decisions/diagnostics. Also, some of
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these diagnostics are painful and have shown several side-
effects on the patients. Thus, novel capabilities need to be
carefully designed for an early/accurate diagnosis (i.c., fewer
mistakes) of these diseases, while maintaining low costs. The
growing in machine and deep learning (ML/DL) field has led
to a disruptive innovation in many fields, such as vision and
speech [2], including healthcare. Thus, healthcare has largely
adopted DL algorithms to efficiently and timely detect diseases
(e.g., Breast cancer) in their early stages [3]-[7]. However,
ML/DL-based healthcare applications still suffer from poor
adoption due to the lack of realistic medical datasets. Indeed,
the privacy nature of these medical datasets makes it difficult
for clinicians and healthcare service providers, to share their
sensitive data, for the development of effective and robust
ML/DL models, that can effectively/timely handle disease
diagnosis for smart healthcare [8].

In the field of Machine Learning (ML), Federated learning
(FL) has attracted a lot of attention from both industrial and
academic communities, due to its ability to train a particu-
lar model, across multiple distributed healthcare stakeholders
without centrally sourcing their medical/sensitive data. In a FL.
setting, each involved clinician builds a local learning model,
leveraging its own medical data. Then, it sends only small
model updates to a central node. Therefore, each clinician
collaborator defines its own data governance and associated
privacy requirements. FL can highly improve the commu-
nication overhead as well as ensure the data privacy. FL
is expected to be highly applied in privacy-aware industry
systems, due to its collaborative learning as well as privacy
preserving [9]-[14]. FL opens the door for a novel research
path on rare/new diseases, where the data is very limited to
some institutions. Thus, FL will allow major healthcare insti-
tutions to collaboratively build an accurate and efficient model,
in a fully distributed way, while preserving the privacy of each
healthcare institution’s sensitive data. FL has numerous privacy
advantages in comparison to the centralized setting/training.
However, it suffers from reverse-engineering attacks that may
extract sensitive information from only the locally computed
updates [15]. To alleviate this issue, HealthFed is based on
a new secure aggregation approach to securely aggregated
local models. Besides, Software defined networks (SDN) and
blockchain have emerged as key enablers of smart networking
in Beyond sixth-generation (B6G) [16]. SDN is a new concept
of network programmability that is expected to improve the
management of network resources [17]-[21], by deploying
centralized nodes, called SDN controller. Besides, blockchain
and smart contracts have shown their effectiveness in achieving
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security, transparency, decentralization and trustworthiness in
major industry segments (e.g., Internet of Things (IoT) [22]-
[24]). Blockchain addresses the challenges related to the
traditional healthcare management systems (e.g., single-point-
of-failure). We believe that the joint of SDN, FL, and BC
will change the healthcare landscape. In this paper, we exploit
the privacy-preserving of FL, the programmability of SDN
and the decentralized of blockchain to design a privacy-aware
collaborative learning between SDN domains (z.e., clinician
collaborators), that is fully trustworthy, decentralized, and
efficient.

First, we implemented HealthFed using pysyft [25]. Then,
we deployed HealthFed on Ropsten official Ethereum test
network [26]. We leverage the well-known Breast Cancer
dataset [27], to validate HealthFed, that contains digitized
images of a fine needle aspirate of a breast mass; it contains
two classes: (1) Benign (B): it represents data samples of
patients who were cancer-free; and (2) Malignant (M): it
represents data samples of patients who have been diagnosed
with cancer.

The main contributions of this work are as follows:

o We propose a novel secure framework (HealthFed) for
healthcare system, that allows multiple SDN-based do-
mains, referred to as clinician collaborators, to securely
collaborate in order to build robust healthcare-based
model, while ensuring the privacy of each clinician.

o We design a novel secure aggregation approach of local
learning models, based on Secure Multiparty Computa-
tion (SMPC).

e We develop a blockchain based scheme to facili-
tate/maintain the collaboration among clinician collabo-
rators in a fully decentralized, trustworthy, and flexible
way.

o We evaluate and validate HealthFed in terms of several
metrics (e.g., Accuracy and F1 score); we also compare
it with centralized approaches using a well-known Breast
Cancer dataset. The in-depth experiments results confirm
that HealthFed achieves privacy and high accuracy/F1
score.

The remainder of this paper is structured as follows. Sec-
tion II discusses the background and related work. The design
and specification of HealthFed are described in Section III.
Section IV highlights the implementation and the performance
evaluation of HealthFed. Finally, we conclude the paper in
section V.

II. BACKGROUND AND RELATED WORK

Recently, ML/DL techniques have revolutionized the health-
care industry segment; since then, ML/DL techniques are
largely used to increase/boost efficiency of traditional Health-
care systems. Our previous works [28], [29] have proven to be
effective at protecting organizations from network intrusions.
In this paper, we extend these works to cover healthcare
applications. Thus, developing privacy-aware healthcare ap-
plications supported by NGN technologies, including B6G
networks. In what follow, we outline the main ML/DL-based
healthcare contributions. Zheng et al. [30] designed a hybrid

2

model that applies Support Vector Machine (SVM) and K-
means (K-SVM), to detect breast cancer using the extracted
tumor features. K-SVM has two stages. First, it uses K-
means scheme to extract the hidden features of the Benign
and Malignant data samples. Then, it determines the most
informative features in order to use them in the elaboration
of the SVM model. The authors validated their approach
using Wisconsin Diagnostic Breast Cancer (WDBC) dataset.
Pritom et al. [31] combined multiple models (z.e., Naive Bayes
(NB), C4.5 algorithm, Decision Tree (DT), and SVM) to
detect breast cancer as well as recurrent breast cancer. The
proposed solution used a feature selection method to improve
the accuracy and the detection rate for each of the model.
The WDBC dataset is used to demonstrate the effectiveness
of the proposed solution. Hamsagayathri et al. [32] combined
multiple models (z.e., RepTree Classifier, J48, Random Forest
(RF), and Random Tree (RT)) to detect breast cancer. The
proposed solution used dimensionality reduction techniques
as well as SEER dataset, to extract the most relevant fea-
tures. Sun et al. [33] designed a Multi-modal Deep Neural
Network (MDNNMD), which uses a Multi-dimensional data
to predict breast cancer diseases. MDNNMD is composed
of (1) A pre-processing bloc which processes three sub-
data (i.e., CNA, gene expression, and clinical data) of the
multidimensional data of breast cancer; (2) A feature selection
module to dynamically extract informative features to reduce
the training time complexity; and (3) A Deep Neural Network
(DNN) model to effectively predict breast cancer diseases.
The authors evaluated the effectiveness of MDNNMD using
breast cancer dataset. Sangaiah et al. [34] proposed a novel
hybrid prediction model (RF-EGA) that combines a ReliefF
ranking model with an entropy based genetic scheme to detect
breast cancer; with the combination of these schemes, RF-
EGA can handle a high dimension datasets. RF-EGA scheme
was evaluated using Wisconsin breast cancer dataset. Kumar
et al. [35] proposed a new voting scheme that combines
multiple ML models (i.e., J48, SVM, and Naive Bayes (NB)),
to effectively detect breast cancer. First, the authors used a
data selection scheme to select/determine the most important
tumor features. The authors validated the effectiveness of their
scheme using a 10-fold cross-validation scheme on Wisconsin
breast cancer dataset. Lakshmi et al. [36] combined two
supervised ML techniques, namely, SVM and Artificial Neural
Network (ANN) to automate the process of detecting breast
cancer diseases. Nourelahi et al. [37] designed a new scheme,
which uses Logistic Regression (LR) algorithm to predict
breast cancer survivability. The proposed scheme can predict
a 60-month survivability in patients who have been diagnosed
with cancer. The authors used a realistic dataset of breast
cancer patients from Shiraz University of Medical Sciences.
Dutta et al. [38] proposed a new scheme based on a fuzzy
logic/inference system, to predict breast cancer. The authors
have assessed the effectiveness of their proposed scheme [38]
in terms of precision, detection rate, recall, and F1 score
using a clinical dataset. Huang er al. [39] designed a new
approach, based on SVM ensembles to predict breast cancer.
The authors have assessed the performance of their solution,
by applying different SVM kernel functions (e.g., linear kernel
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and RBF kernel). The authors evaluated the effectiveness of
their proposed scheme [39] in terms of ROC curve, detection
accuracy and F1 score.

Based on our analysis above works [30]-[39], we observe
that most of them are computationally expensive. In addition,
the lack of updated and realistic medical datasets, providing
large data samples for an efficient training is still an ongoing
challenge. The privacy nature of these medical datasets makes
it difficult for clinicians and healthcare service providers to
share their private. To alleviate this issue, we propose a fully
decentralized framework, enabling several SDN controllers to
build a robust healthcare DL-based model in a secure and
collaborative way, while ensuring the privacy of such sensitive
data. In addition, our framework ensures a secure aggrega-
tion of local models. Indeed, the use of the new emerging
technologies, namely FL, SDN, and blockchain, will allow
major healthcare institutions to collaborate with the research
communities, without without disclosing the privacy of their
patients’ data. Thus, developing robust healthcare application
supported by NGN technologies, including B6G networks.

IIT. HEALTHFED

In this section, we describe our framework (HealthFed)
leveraging FL, SDN, and blockchain, to build robust
healthcare-based model, while preserving the privacy of sen-
sitive data. First, we describe the architecture of our proposed
framework. Second, we briefly describe the HealthFed smart
contract. Finally, we provide more details about our proposed
framework.

A. HealthFed Architecture

HealthFed enables a collaborative learning among many
healthcare domains (i.e., SDN-based domain), by exchanging
only encrypted ML model updates. Fig. 1 shows the system
architecture of HealthFed. HealthFed comprises three main
planes (1) A data plane which contains several OpenFlow
(OF) equipment, as forwarders. SDN controllers generates
OF rules that will be used by OF equipment through south-
bound API (Application Programming Interfaces), e.g., OF
protocol [40], to ensure the packets forwarding/monitoring
of multiple IoT-enabled healthcare devices. Each IoT-enabled
healthcare device can be used to monitor patients health or
to track location of medical equipment; (2) A control plane
composed of many SDN controllers; where each one will
manage a particular geographical data plane, and deploys the
rules issued by a application plane; and (3) An application
plane which ensures a privacy-aware collaborative learning,
between healthcare SDN-based domains (HDs) (see Fig. 1).
First, a healthcare institution leader, referred to as organization,
builds smart contracts on top of the Ethereum blockchain. It
then uses functions of collaboration smart contract to add
clinician collaborators. Thus, only authorized/authenticated
clinician collaborators can participate in the collaboration
process. Blockchain will ensure the availability, reliability, and
transparency, of collaboration between healthcare SDN-based
domains. Once the authentication phase is done, the healthcare
institution leader will initiate the training of a shared ML
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model among healthcare SDN-based domains. Each healthcare
SDN-based domain builds its local ML model using its own
medical dataset. It then transfers the encrypted weights of its
model to a central node, in order to perform a secure aggre-
gation. The latter aggregates the encrypted updates sent from
each healthcare SDN-based domain and send the aggregated
value to the healthcare institution leader. Finally, the healthcare
institution leader decrypts the global model, and sends its
parameters to the healthcare SDN-based domains for another
round of training. This process is re-executed for maximum
number of iterations.

B. HealthFed’s Smart Contract

We consider a healthcare institution leader who wants to
manage a privacy-aware collaborative learning in healthcare
systems. First, the healthcare institution leader creates and
deploys the HealthFed smart contract in Ethereum blockchain.
It then uses the smart contract functions of HealthFed to add
clinician collaborators to the federated learning collaborative
process. It includes the address of clinician collaborator, an
initial credibility that can be changes over time. The credibility
score gives a strongly incentive to clinician collaborators
to behave correctly. The healthcare institution leader uses
the HealthFed smart contract to add or remove clinician
collaborators from the federated learning collaborative process.
HealthFed smart contract provides the healthcare institution
leader with the flexibility to manage this process in a dis-
tributed, transparent, and trustworthy way. We use solidity
language to implement the HealthFed’s smart contract [41].
It has several functions, including: (1) addHealthCollaborator:
it can be called only by the healthcare institution leader to
consider a new healthcare participant; it uses the healthcare
Externally Owned Account (EOA) address as well as some
public information about the healthcare organizations to add
the healthcare participant to the Ethereum blockchain and
timestamp when the new healthcare participant was added;
and (2) removeHealthCollaborator: it can be called only by
the healthcare organization leader to remove a healthcare
institution from the federated system; it considers EOA of the
healthcare, and removes it from the federated collaboration
system.

C. HealthFed Framework

Fig. 2 shows the main interactions among HealthFed’s ac-
tors. The operation of HealthFed includes the following steps.
First, the healthcare institution leader initiates the process
of collaboration. It initializes the parameters of the shared
model with an initial weights wy and selects N authenti-
cated clinician collaborators. Then, the healthcare institution
leader transfers the shared model to participating clinicians
n, 1 <= n <= N. Each clinician performs local updates
using its local medical training data. Afterwards, each clinician
encrypts its ML model and divides it to Z,. sub-models. When
receiving local models, an aggregator node z, 1 <= z <= Z,
aggregates the received local models and generates a new
global model, before sending it to the organization. Finally,
the healthcare institution leader decrypts and sends the global
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model parameters to each healthcare SDN-based domain for
another round of training. This process is re-executed during
a maximum number of iterations. HealthFed is based on SDN
during the collaborative learning to allow each healthcare
domain to easily extract health information.

We develop a novel secure scheme, using SMPC, to secure
the local models against reverse-engineering attacks. In our
study, the objective function of our neural network is defined
as follows:

min W,y
Jnin, p(w,)

1 N
where <)O(W’I') = N Z ‘:On<w'r') Y]
n=1

with N is the clinician participants and ¢, (w,) is the n**

clinician’s objective function; ,,. Hence, during the training

phase, each clinician aims to determine the best value of
parameter w,., at each iteration r, reducing the loss function,
as follows:

J
1 n
Vi palw) = - 3 e W, @)
" jn=1
where J,, is the number of medical data observations (x;, ,y;, )
of the n'" clinician participant.
Periodically, each clinician calculates the average gradient
using its own medical data, as follows:

Then, each clinician participant performs a local gradient
descent step on the shared ML Model, utilizing their local
medical records as follows:

vn, W;L — W, — nvsan(m/r; b) 4

To protect the locally computed models from reverse engineer-
ing attacks, we apply SMPC, which enables each clinician n
to divide its learning models into multiple shares. Therefore,
aggregator nodes z = 1, ..., Z, will receive encrypted shares
wy7, and learn nothing about the secret w;’. SMPC provides
better computation performance, as compared to other cryp-
tography approaches, such as Homomorphic.

First, we consider a finite fixed range from 0,1, ..., P for a
prime P. Each clinician n, encodes its learning parameters w,’
as integers. Then, it calculates the modulo of the result with
the prime P. After that, each clinician n divides its encrypted
values to Z, shares. The aggregator nodes z, 1 < z < Z,,
will receive such shares w:$ (i.e., locally encrypted model
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Fig. 4. Data distribution of the highest scoring features of Breast Cancer Wisconsin dataset

updates). Then, each secure aggregator z aggregates these
encrypted values and updates the weights as follows:

N
C C 1 n
VZ7 r+1,z — Wr,z - nﬁ 712::197;2 )

where 7 is a fixed learning rate on each clinician collaborator,
and + ZnN:1 gr.=Ve(We_ ;b ). For each collaborator n:

Vi, W WE — ngr (©)

Thus, each aggregator z generates a new model update, as
follows:

N
c ]' c,n
\V/Z, r+1,z — ]T[ 7; Wr—&—l)z (7)

Finally, the healthcare institution leader sums the received
model updates, from each aggregator z, in order to reconstruct
the secret. It then decrypts the learning models and sends the
aggregated model to the involved clinicians. This process is
run during a maximum number of iterations 7,,q.

IV. EXPERIMENTAL STUDY

This section validates the performance of HealthFed through
an experimental study. First, we present the simulation param-
eters. Second, we discuss experimental results. Last, we assess
the effectiveness of HealthFed.

A. Simulation Parameters

To implement HealthFed, we used Pysyft library which
is privacy-aware DL tool, built on top of PyTorch [42]. In
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Fig. 5. Model loss for (a) 10 rounds; (b) 25 rounds; and (c) 50 rounds.

addition, we used Mininet emulator [43], to create a real SDN-
based network, which enables to deploy virtual OpenFlow
switches (e.g., OpenVswitch [44]) and containers, including
multiple SDN controllers (i.e., four SDN controllers, see
Fig.1), to perform local training on their local data. We
also used truffle framework to deploy smart contract of our
HealthFed [45]. We first used Ganache simulator to deploy
HealthFed smart contract on a private blockchain [46]. We
then deployed it on Ethereum official Ropsten [47]. For the
test data, we leverage the well-known public Breast Cancer
Wisconsin dataset; it contains real-valued features, extracted
from digitized images of a fine needle aspirate (FNA) of
a breast mass; it contains two classes: (1) Benign (B): it
represents data samples of patients who were cancer-free; and
(2) Malignant (M): it represents data samples of patients who
have been diagnosed with cancer.

B. Experimental Results

We evaluate the performance of HealthFed using Breast
Cancer Wisconsin dataset; the objective is to build a global
model that is capable to accurately classify each data sample,

as either Benign or Malignant data sample. The data distri-
butions of features of Breast Cancer Wisconsin dataset vary
widely. Thus, we applied Equation (8) to re-scale these data
values.

X — Mean(X;)
— stdev(X;)

With X; is an input feature, for example, radius and fractal
dimension, stdev(X;) and Mean(X;) are the standard and
mean deviation values of each input feature, respectively.

We constructed a shared DL. Model comprising: one input
layer of 30 dimensions, that considers the 30 input features
of the Breast Cancer Wisconsin data, 2 hidden layers and an
output layer of 2 dimensions. In addition, to prevent over-
fitting, we used Dropout technique [48]. We used cross entropy
L, as a loss function (Equation. (9)). We used Adam (Adaptive
Moment Estimation) [49] as optimizer, to reduce the value of

L.

X ®)

M

> Y+ Log(ym) ©)

m=1

1

L=
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with ;, is the predicted values of the m®" class, while 3, is
the real values of m!" class, and M represents the number of
data observations.

Besides, we used Tree-based Information gain Feature Se-
lection (TIGFS), to determine the most important features
in the Breast Cancer dataset. Fig. 3 shows TIGFS score of
the used dataset features; it depicts such scoring features in
descending order. We clearly notice that more than 85% of the
30 features of Breast Cancer Wisconsin dataset do not have an
important contribution. Fig. 4 shows the data distribution of the
highest scoring features (i.e., ’worst perimeter’, worst radius’,
"worst concave points’, and 'mean concave points’) of Breast
Cancer Wisconsin dataset. We notice that the most informative
features can effectively separate the two classes (z.e., Benign
(B) and Malignant (M)). Hence, the TIGFS method can highly
help to deduce relevant features, that can improve directly
the performance of the trained model, and hence generate an
accurate ML/DL prediction model.

To test HealthFed, we divide Breast Cancer Wisconsin

dataset, in order to give each clinician a subset of the data. We
note also that each SDN domain trains its models during 10
to 50 rounds/iterations of federated training and for a number
of epochs from 1 to 5. Figs. 5 (a), 5(b), and 5(c) illustrate the
learning curves of the four SDN-based healthcare domains for
10, 25, and 50 of rounds/iterations of training, respectively. We
notice that the loss decreases to a minimum value (i.e., almost
zero), which shows clearly that models are able to learn from
each other, without being able to exchange/share their private
medical data.

C. Performance Validation

We validate the HealthFed performance in terms of several
metrics, including precision, accuracy, True Positive Rate
(TPR), False Positive Rate (FPR), Fl-score, and Area Under
the ROC Curve (AUC). In addition, we also consider confusion
matrix in addition to ROC curves, which reflect TPR based on
FPR (see Table I). Noting that FN (False Negatives) measures
the rate of malignant data observations, which are predicted

https://mc.manuscriptcentral.com/tnse-cs



coNOULT A~ WN =

oSO uuuuuuuuubdbdDDDIDDEDBEDIDNDIDDDAEWWWWWWWWWWNNNDNNNNNNN=S =2 2 2323 2320239
QO VWO NOUA,WN=_OUVONOOCTULDDWN—_LOUVONOOCULLAARWN—_OVONOOCULLDMWIN—_OVONOUVULLDSD WN=O0

Transactions on Network Science and Engineering

8

Page 32 of 35

1.0 g ~7
T
1 7
© 0.8 |l el
5 | -~
o v -~
i Pid
206
= ] e
0 1 7
£ |
o 0.4 -
> ---- micro-average ROC curve (area = 0.98)
= macro-average ROC curve (area = 0.98)
02y ROC curve of Benign (area = 0.98)
—— ROC curve of Malignant (area = 0.98)
0.0 k2
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(@)
1.0 — 1.0 =
i L g .
i R i R
{ ,/ I ,/
o 0.8 : ,/’ © 0.8 : ,z’
s I Pid © . -
o ! 7 -4 | e
i Pid i Pid
Los| o 206 | e
+ -’ +— -’
7 ,/’ @ ,/z
g o
0 04 - 0 04 -
) ---- micro-average ROC curve (area = 0.99) 2 ---- micro-average ROC curve (area = 0.99)
= macro-average ROC curve (area = 0.99) = macro-average ROC curve (area = 0.99)
0.2 —— ROC curve of Benign (area = 0.99) 0.2 —— ROC curve of Benign (area = 0.99)
—— ROC curve of Malignant (area = 0.99) —— ROC curve of Malignant (area = 0.99)
0.0 k= 0.0 k=
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(b) (©)
Fig. 7. ROC Curves for (a) 10 rounds; (b) 25 rounds; and (c) 50 rounds.
Accuracy and F1 score of HealthFed and centralized ML/DL models using Breast Cancer Wisconsin dataset
100 { ™= ’:;“5‘1':: 97 97 - =
93 93 o o o o
o o e
% S o b o)
60 .o.n.- o.- . -.-.-. .-.-.-.
£ e o Ees
40 ...-'. ...'..- .'.... '.....'
0 Ja8 AdaBo(:st. - RF»E.G/; = MDNN'MI') : voteE'r\S' HealthFed
Fig. 8. Accuracy and F1 Score of HealthFed and centralized ML/DL models using Breast Cancer Wisconsin dataset

as benign data samples, TP (True Positives) measures the rate
of malignant data observations, predicted as malignant data as

well, FP (False Positives) measures the rate of benign data, and
are predicted as malignant data, while TN (True Negatives)
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TABLE I
CONFUSION MATRIX.

Classified as Malig-
nant

True Positives

False Positives

Classified as Benign

Malignant
Benign

False Negatives
True Negatives

reflects the rate of benign data, which are correctly predicted,
as benign data.
Accuracy is the rate of corrected predictions, on the total
number of predictions, calculated as follows:

TN +TP

A = 10
CUraY = TP TPt FN + FP (10)

Precision is the rate of corrected predictions of malignant
data samples, on the total number of predictions related to
malignant data samples, as follows:

TP

Precision = ———— (11)

TP+ FP

True Positive Rate (TPR), called also Detection Rate (DR)
is calculated as follows:

B TP
TP+ FN
False positive rate (FPR) is the rate of malignant data,

predicted incorrectly as benign data, on the total benign data,
calculated as follows:

TPR (12)

B FP
~ FP+TN
F1 score considers both detection rate and precision and

metrics to calculate the harmonic mean of both recall and
precision, as follows:

FPR (13)

Precision x Recall
Fl1=2 14
* Precision + Recall (14

TABLE 11
PERFORMANCE METRICS OF HEALTHFED
Iterations| Precision | Accuracy | Recall| F1 Time(s)
10 98% 98% 98% 98% 12.04
25 99% 99% 99% 99% 32.31
50 99% 99% 99% 99% 60.48

Figs. 6(a), 6(b), and 6(c) show the confusion matrices for 10
iterations, 25 iterations, and 50 iterations of training, respec-
tively. HealthFed reaches 98% in precision, accuracy, F1 score,
and recall, respectively, for 10 iterations of learning (with
only 12.04 seconds of training). During 25 iterations/rounds
of training, HealthFed reaches 99% of precision, accuracy,
F1 score, and recall, respectively (with only 32.31 seconds
of training). For 50 iterations/rounds of training, HealthFed
reaches 99% in precision, accuracy, F1 score, and recall,
respectively (with only 60.48 seconds of training). Table II lists
the overall performance of HealthFed. The AUC metric shows
the degree of separability between the benign and malignant

Transactions on Network Science and Engineering

classes. Figs. 7(a), 7(b), and 7(c) show the ROC curves of the
inference FLL. model on Breast Cancer Wisconsin dataset. We
obtain a high AUC score of 0.99 for 10, 25, and 50 iterations
of training, respectively. The experiment results demonstrate
that HealthFed reaches promising performance, while ensuring
the privacy of the involved clinician healthcare.

D. Comparative Analysis

In this section, we compare the performance of HealthFed
with centralized existing approaches, leveraging Breast Cancer
dataset. Kumar ef al. [50] implement seven different ML/DL
models: AdaBoost, J-Rip, Naive Bayes (NB), J48, Multiclass
Classifier (MC), Logistics Regression (LR), and Multi-layer
Perceptron (MLP). In addition, we also compare HealthFed
with: Multi-modal Deep Neural Network [33], RF-EGA [34],
a voting ensemble learning model (VoteEns), that combines
common models (i.e., J48, SVM, and Naive Bayes (NB)) [35].
Table TII gives the performance of existing approaches as
well as our HealthFed scheme, when using Breast Cancer
Wisconsin dataset. Fig. 8 shows both the accuracy and F1
score metrics of HealthFed and centralized existing ML/DL
models. We observe that HealthFed needs only 32.31 seconds
of training time, to generate better accuracy and F1 score
(99%). The obtained results confirm that HealthFed not only
has better F1 score and detection accuracy than centralized
ML/DL contributions, but also ensures the privacy of the
collaborators. Thus, HealthFed is a promising privacy-aware
framework for healthcare systems

TABLE 111

PERFORMANCE EVALUATION COMPARISON

Techniques | Accuracy | F1 Time
(second)

J48 0.83 0.75 N/A
NB 0.73 0.77 N/A
MC 0.94 0.93 N/A
MLP 0.97 0.97 N/A
LR 0.97 0.97 N/A
J-Rip 0.86 0.81 N/A
AdaBoost 0.82 0.75 N/A
MDNNMD 0.93 N/A N/A
RF-EGA 0.85 0.83 N/A
VoteEns 0.97 N/A N/A
HealthFed 0.99 0.99 32.31

V. CONCLUSION

In this paper, we proposed a novel framework, called
HealthFed, that enables multiple clinical participants (SDN
domains) to collaboratively train an effective DL-based health-
care model, while ensuring their privacy. First, we introduced a
novel secure aggregation approach that uses SMPC to securely
aggregate local updates. Then, we built a blockchain-based
approach that uses Ethereum blockchain to maintain collabo-
ration between clinicians in a fully decentralized, reliable, and
flexible way. The obtained results on the public Breast Cancer
dataset showed that HealthFed achieved privacy and high
accuracy. HealthFed provides better performance as compared
to centralized ML/DL-based solutions, in terms of F1 score
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and accuracy, while ensuring the privacy of each collaborator’s
sensitive data. This makes HealthFed a promising framework
for healthcare systems. As a future work, we plan to consider
other healthcare datasets in order to cover other types of
critical diseases.
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